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The icosahedral symmetry group H3 of order 120 and its dihedral subgroup H2

of order 10 are used for exact geometric construction of polytopes that are

known to exist in nature. The branching rule for the H3 orbit of the fullerene C60

to the subgroup H2 yields a union of eight orbits of H2: four of them are regular

pentagons and four are regular decagons. By inserting into the branching rule

one, two, three or n additional decagonal orbits of H2, one builds the polytopes

C70, C80, C90 and nanotubes in general. A minute difference should be taken into

account depending on whether an even or odd number of H2 decagons are

inserted. Vertices of all the structures are given in exact coordinates relative to a

non-orthogonal basis naturally appropriate for the icosahedral group, as well as

relative to an orthonormal basis. Twisted fullerenes are defined. Their surface

consists of 12 regular pentagons and 20 hexagons that have three and three

edges of equal length. There is an uncountable number of different twisted

fullerenes, all with precise icosahedral symmetry. Two examples of the twisted

C60 are described.

1. Introduction

Some three decades ago stable carbon molecules C60 and C70

were discovered. This stimulated a large number of studies,

both experimental and theoretical, involving such molecules

and their modifications (Dresselhaus et al., 1996; Fowler &

Manolopoulos, 2007; Harris, 1999; Keef & Twarock, 2009;

Twarock, 2002) under the generic name ‘fullerenes’. More

fullerenes were found to exist in nature and many more

pentagon/hexagon shells are described in the literature

(Dresselhaus et al., 1996; Fowler & Manolopoulos, 2007;

Harris, 1999; Kroto & Walton, 1993).

The C60
1 molecule is the most common member of the

family of hollow-cage carbon cluster fullerenes. The C60

molecule has been investigated experimentally in the solid

state as well as in the gas phase (Cataldo et al., 2010; Dres-

selhaus et al., 1996; Shinar et al., 1999; Verberck & Michel,

2007). The structure of C60 is that of a truncated icosahedron,

made of hexagons and pentagons, with 60 carbon atoms

positioned at vertices of the corners of the hexagons, and a

bond along each edge. The next most common naturally

occurring member of the hollow-cage cluster fullerenes is

composed of 70 carbon atoms and is the molecule C70,

possessing a rugby-ball structure with a slight pinching at its

waist as the bond lengths follow a simple pattern determined

by their relationship to five- and six-membered rings

(McKenzie et al., 1992; Randic & Vukicevic, 2006).

A significant amount of effort has taken place to determine

the reasons for the stability of the C60 and C70 molecules, as

well as towards ascertaining which other fullerenes, of

different size and form, can be produced as stable entities. A

number of closed-cage fullerenes with greater than 70 carbon

atoms have now been experimentally produced and confirmed

to exist, while calculations have predicted that all even-

numbered fullerenes with size greater than C70 may be theo-

retically possible.

One aim of this paper is to provide exact descriptions of

particular fullerenes. Such a construction could enable, for

example, defining functions on them leading to useful further

studies. In particular, let us imagine, for example, a function

of x 2 R3 defined by a particular fullerene in the following

way. Each vertex contributes to such a fullerene function

expð2�ih�; xiÞ, where the scalar product contains the coordi-

nates � of the vertex and the continuous variable x is in R3. In

terms of different fullerene functions one could study inter-

actions between carbon atoms and interactions with the field

generated by the fullerene in the entire space R3. Clearly

knowing the position of vertices of the fullerene with limited

precision would handicap such a study. The construction with

exact coordinates is accomplished in this work through the

breaking of the icosahedral symmetry to one of its maximal

subgroups. In the present work, that subgroup is H2, the

dihedral group of order 10.

1 C60 is a standard symbol for the polytope commonly used to model certain
carbon molecules.
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It turns out that little information can be found in the

literature about the exact coordinates of vertices of fullerenes

with broken icosahedral symmetry. Typically one would be

referred to classical polytopes, or to detailed information

provided about conjugacy classes of the elements of the

icosahedral group (Dresselhaus et al., 1996; Li & Xu,

2009). But these two refer only to structures confined to a

sphere.

The task of providing exact coordinates of all vertices of the

fullerenes is possible, provided one uses appropriate bases

related to the icosahedral group even when the symmetry is

broken to a subgroup of H3.
2 Those are the bases of simple

roots of H3, the �-basis, and its dual, the !-basis, or their

combination. If an orthonormal basis needs to be used, there is

a particular choice that allows one to have exact coordinates

of the vertices (Chen et al., 1998; Conway & Sloane, 1998;

Moody & Patera, 1993). Such an orthonormal basis in R3

can be understood as formed by a discrete set of purely

imaginary quaternions (‘icosians’) (Moody & Patera, 1993).

A role for the quaternionic multiplication of the discrete

set of vectors-roots of H3 is yet to be found in fullerene

studies.

In the present work we consider the existence and structure

of fullerenes larger than C60 as a symmetry-breaking

problem. Guided by the common practice in particle

physics, we consider the description specifically of the C70, C80

and C90 molecules as a symmetry-breaking problem with

the additional twist that the usual branching rule H3 to

H2 is enhanced by adding to it an additional decagonal

H2 term. The group H2 is the lowest non-crystallographic

finite reflection group, known as the dihedral group of

order 10. We consider the icosahedral group H3 of order

120 of the fullerene C60 as the exact symmetry that is broken

to its subgroup H2 of order 10 of dihedral symmetries. We

also show within this framework, utilizing this symmetry-

breaking mechanism, how more complex fullerene structures,

such as nanotubes, may naturally arise. This provides a

framework for understanding the occurrence of a number of

even-numbered fullerenes and more complex structures may

be assembled.

In x2 the icosahedral symmetry of C60 is recalled and

pertinent tools for the subsequent consideration are intro-

duced. In x3 the vertices of C60 are generated and examples of

its surface features are described. In x4 the structure of C60 is

viewed from its subgroup H2. In x5 the structures of C70 and

also C80 are presented.

In the last section we describe a continuum of ‘twisted

fullerenes’ with exact icosahedral symmetry, apparently not

found in the fullerene-related literature. The polytope C60 is

just one member of the continuum of possibilities. By working

out two particular examples, we show other members of the

set of polytopes with exact icosahedral symmetry.

2. Icosahedral symmetry of C60

The icosahedral symmetry has been known from antiquity.

The icosahedral symmetry group has been presented since

then in various degrees of completeness, complexity and

abstraction (see example in Litvin, 1991). If extensive

computations are to be undertaken using the icosahedral

group or any other finite reflection group in Euclidean space,

then the approach that starts from the corresponding

Coxeter–Dynkin diagram of simple roots is the most efficient

and thus the most practical one (Humphreys, 1990). This is

the path we use here. At the outset the theory provides one

with

(i) the simple roots that are the normals to the reflection

mirrors for the corresponding reflection group [equation (1)];

(ii) the dual or reciprocal !-basis [equation (4)];

(iii) the general formula [equation (9)] for reflections in any

Euclidean space.

In this section we work out the details for these three sets of

tools pertaining to the icosahedral symmetry.

First let us introduce the solutions of the quadratic equation

x2 ¼ xþ 1:

� ¼
1

2
ð1þ 51=2Þ ’ 1:6180 . . . ;

�0 ¼
1

2
ð1� 51=2

Þ ¼ 1� � ¼ �1=� ’ �0:6180 . . . ;

where � is known as the golden mean.

All coordinates of the vertices of C60, C70 and related full-

erenes and nanotubes are given here in non-orthogonal bases

inherent to the icosahedral symmetry group. An option is also

presented which allows one to rewrite the vertices using exact

coordinates in an orthonormal basis of the three-dimensional

real Euclidean space R3. The coordinates relative to all such

bases are exact and all are of the form QþQ�, where Q

stands for a rational number.

2.1. Three useful bases in R3

Besides the orthonormal basis in the three-dimensional

real Euclidean space R3, it is useful to introduce a pair of

dual bases directly related to the icosahedral symmetry.

However, even the orthogonal basis can be introduced in a

way particularly appropriate for the finite non-crystal-

lographic Coxeter groups (Chen et al., 1998; Moody & Patera,

1993). Among those groups the group H3 is the second largest,

see x2.4.

2.2. The a-basis {a1, a2, a3}

The simple root basis exists for every finite group generated

by reflections (Deodhar, 1982) and, in particular, also for the

icosahedral group H3 of order 120 (Chen et al., 1998; Moody &

Patera, 1993). The lengths and relative angles of the �-basis of

R3 are defined by the matrix C of the scalar products of the

basis vectors
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mathematics, where the notations H2;H3;H4 are standard names of non-
crystallographic reflection groups in two-, three- and four-dimensional
Euclidean spaces.



C ¼ ðCjkÞ ¼ ðh�j; �kiÞ ¼

2 �1 0

�1 2 ��

0 �� 2

0
B@

1
CA;

det C ¼ 6� 2�2
¼ 4� 2� ’ 0:7749 . . . : ð1Þ

The �-basis is conveniently shown as the nodes of the Coxeter

diagram of H3 on Fig. 1. Decorations of the links between the

nodes of the diagram imply the following values of the scalar

products:

h�1; �2i ¼ �1; h�2; �3i ¼ ��; h�1; �3i ¼ 0: ð2Þ

Note that, according to equation (1), the basis vectors are of

the same length, namely 21=2.

2.3. The x-basis {x1, x2, x3}

The relative angles and lengths of the vectors of the !-basis

are defined by the matrix C�1 inverse to C. The matrix C�1 is

formed by the scalar products of the basis vectors

ðC�1
jk Þ ¼ ðh!j; !kiÞ ¼

1

det C

3� � 2 �

2 4 2�

� 2� 3

0
B@

1
CA

¼
1

2

2þ � 2þ 2� 1þ 2�

2þ 2� 4þ 4� 2þ 4�

1þ 2� 2þ 4� 3þ 3�

0
B@

1
CA: ð3Þ

Note that the vectors !1, !2 and !3 are of different length.

The duality of the bases

h�j; !ki ¼ �jk; j; k ¼ 1; 2; 3 ð4Þ

is a consequence of their definitions. Indeed, we have the

matrix relations

� ¼ C!; ! ¼ C�1�: ð5Þ

The dihedral subgroup of H3, which is of order 10, is denoted

here by H2. For its simple roots we choose two of the simple

roots of H3, namely �2 and �3. By equation (4), the direction

orthogonal to the H2 plane, spanned by !2 and !3, is that of �1.

The mixed basis of f�1; !2; !3g turns out to be useful to us

subsequently.

2.4. The a- and x-bases of H3 in coordinates relative to an
orthonormal basis

The root system of H3 consists of 30 roots. Its 15 positive

roots are listed in equation (6.13) of Champagne et al. (1995)

as a linear combination of the simple roots. The simple roots of

H3 can be chosen (Chen et al., 1998; Conway & Sloane, 1998;

Moody & Patera, 1993) relative to an orthonormal basis in a

real Euclidean space R3 of dimension 3 as follows:

�1 ¼
1

21=2
ð��0;��; 1Þ; �2 ¼

1

21=2
ð1;��0;��Þ;

�3 ¼
1

21=2
ð�1;��0; �Þ; ð6Þ

where the constant 21=2 is to maintain the normalization of the

simple roots as in equation (1). The highest root of H3 is

��0!2.

The !-basis of H3 is found relative to the �-basis using

equation (5), and relative to the orthonormal basis using

equations (5) and (6):

!1 ¼
1

2
½ð2þ �Þ�1 þ ð2þ 2�Þ�2 þ ð1þ 2�Þ�3� ¼

1

21=2
ð�; 0; 1Þ

!2 ¼
1

2
½ð2þ 2�Þ�1 þ ð4þ 4�Þ�2 þ ð2þ 4�Þ�3� ¼

1

21=2
ð1þ �; �; 1Þ

!3 ¼
1

2
½ð1þ 2�Þ�1 þ ð2þ 4�Þ�2 þ ð3þ 3�Þ�3� ¼

1

21=2
�ð1; 1; 1Þ:

ð7Þ

2.5. The reflections generating the icosahedral group

The three reflection operations, r1, r2 and r3, in R3 that

satisfy the identities

r2
1 ¼ r2

2 ¼ r2
3 ¼ 1; ðr1r2Þ

3
¼ 1; ðr1r3Þ

2
¼ 1; ðr2r3Þ

5
¼ 1

ð8Þ

define abstractly (Chen et al., 1998; Humphreys, 1990) the

icosahedral group H3 of order 120. Explicitly one has

rkx ¼ x� hx; �ki�k; k ¼ 1; 2; 3; x 2 R3: ð9Þ

Any point x 2 R3 is reflected by rk in the mirror orthogonal to

�k and passing through the origin of R3. In particular, rk0 ¼ 0,

rk�k ¼ ��k and rk!j ¼ !j � �j�jk. The points x and rkx are

equidistant from the origin of R3.

2.6. The facets of C60

The facets of C60 of dimensions 0, 1, 2 are, respectively, 60

vertices, 90 edges, 32 faces out of which 20 are hexagons and 12

are pentagons (Fig. 2).
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Figure 2
The polytope C60 is formed by 60 vertices equidistant from its centre. Its
surface consists of 12 regular pentagons and 20 regular hexagons. All 90
edges are of the same length.

Figure 1
Coxeter diagram of H3. Its nodes are taken to stand either for the basis
vectors of the �-basis numbered from left to right, or for the vectors of the
!-basis, or for the reflections r1; r2; r3 in mirrors orthogonal to vectors of
the �-basis and intersecting at the origin of R3.



There is a little-known efficient method (Champagne et al.,

1995; Szajewska, 2012) for describing the representative faces

of any polytope generated by reflection in Rn. In particular,

it allows one to count the number of faces of C60 and it

makes straightforward construction of a representative face of

each conjugacy class. The method consists in recursively

decorating3 the corresponding diagram and reading off the

decoration the reflections generating the symmetry group of

each face (black lozenges) and the stabilizer of the face (white

lozenges). The number of faces in each of the H3 orbit/

conjugacy classes is obtained by dividing the order of H3 by

the order of the symmetry group of the face multiplied by the

order of the stabilizer of the face. For more details about the

recursive decorations of the diagram on Fig. 1, see Champagne

et al. (1995). Applied to the fullerene, we get the following

decorations of the diagram Fig. 1. Each decoration refers to

one conjugacy class of faces of the polytope C60.

The first column contains decorated nodes of the diagram of

H3. Line (a) in the scheme refers to the vertices. All belong to

the same H3 conjugacy class; equivalently, they are generated

by the reflections from the same seed point ð1; 1; 0Þ ¼

!1 þ !2. Line (b) in the scheme counts the edges where two

hexagonal faces meet. Similarly line (c) in the scheme counts

the edges that separate hexagonal and pentagonal faces. In

lines (d) and (e) in the scheme the hexagonal and the penta-

gonal faces of C60 are counted.

Note that the dimension of a face is equal to the number of

black lozenges in the decoration of its diagram. Reflections

corresponding to black lozenges generate the symmetry group

of the face. The white lozenges indicate the reflections that fix

the face pointwise.

Let us calculate and compare the lengths of the two types of

edges of C60, namely lines (b) and (c). Since all vertices are the

same, we calculate the lengths between the seed point [line

(a)], which is !1 þ !2 and r1ð!1 þ !2Þ in one case, and !1 þ !2

and r2ð!1 þ !2Þ in the other case. In order to simplify the

expressions, we leave out the angle brackets of the scalar

products. Scalar products of vectors of !-basis are read off

equation (3),

f½!1 þ !2 � r1ð!1 þ !2Þ�
2
g

1=2
¼ ½ð2!1 � !2Þ

2
�
1=2
¼ 21=2:

Similarly

f½!1 þ !2 � r2ð!1 þ !2Þ�
2
g

1=2
¼ ½ð�!1 þ 2!2 � �!3Þ

2
�
1=2
¼ 21=2:

The hexagonal faces of C60 emerge naturally from the classi-

fication of its 2-faces as one orbit of the seed hexagon [line

(d)]. The symmetry group of the hexagons is generated by the

reflections r1 and r2. Similarly the pentagon faces of C60 come

up naturally from the classification of its 2-faces as one orbit of

the seed pentagon [line (e)]. The symmetry group of the

pentagons is generated by the reflections r2 and r3.

Let us illustrate the construction of the hexagons and of the

pentagon that have in common the dominant point of C60:

ð1; 1; 0Þ

r1ð1; 1; 0Þ ¼ ð�1; 2; 0Þ

r2ð1; 1; 0Þ ¼ ð2;�1; �Þ

r1r2ð1; 1; 0Þ ¼ ð�2; 1; �Þ

r3r2r1ð1; 1; 0Þ ¼ ð1;�2; 2�Þ

r1r2r1ð1; 1; 0Þ ¼ ð�1;�1; 2�Þ ð10aÞ

ð1; 1; 0Þ

r2ð1; 1; 0Þ ¼ ð2;�1; �Þ

r3r2ð1; 1; 0Þ ¼ ð2; �;��Þ

r2r3r2ð1; 1; 0Þ ¼ ð2þ �;��; 1Þ

r3r2r3r2ð1; 1; 0Þ ¼ ð2þ �; 0;�1Þ ð10bÞ

r3ð1; 1; 0Þ ¼ ð1; 1; 0Þ

r3r1ð1; 1; 0Þ ¼ ð�1; 2; 0Þ

r3r2ð1; 1; 0Þ ¼ ð2; �;��Þ

r3r1r2ð1; 1; 0Þ ¼ ð�2; 2þ �;��Þ

r3r2r1ð1; 1; 0Þ ¼ ð1; 2�;�2�Þ

r3r1r2r1ð1; 1; 0Þ ¼ ð�1; 1þ 2�;�2�Þ: ð10cÞ

The vertices of a hexagon and pentagon of the surface of C60

adjacent to the dominant point of C60 are shown here in the

!-basis. The pentagon of equation (10b) is situated in the

plane spanned by !2 and !3. Therefore it is generated by

the reflections r2 and r3. The first hexagon of equation (10a)

is situated in the plane spanned by !1 and !2. Therefore it is

generated by reflections r1 and r2. The second hexagon is

situated in a plane that is not the same as the plane of the

first hexagon. It is the first hexagon transformed point-by-

point by r3.

The seed point ð1; 1; 0Þ is a vertex shared by three faces of

dimension 2 of C60. In equations (10a), (10b), (10c) we have

constructed the pentagon and both hexagons.

3. The vertices of C60

Fig. 2 shows the polytope of C60. It is colloquially called full-

erene or buckyball, soccerball or even soccerballene. The

vertices of C60 are generated by the reflections [equation (9)]

from any of its points. Therefore they all belong to the same

H3 orbit. The list [equation (11)] of vertices of C60 is given in

the !-basis of x2.3. It is a non-orthogonal basis [cf. equation

(3)] defined for the icosahedral symmetry. Therefore the
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3 There is a 1–1 correspondence between symbols used to decorate the
Coxeter–Dynkin diagrams here and in previous papers. More precisely, the
black lozenge, square, white lozenge symbols correspond, respectively, to the
circled dot, square, crossed box, in Moody & Patera (1992), Moody & Patera
(1995) and to the circle, square, crossed box in Champagne et al. (1995).



important properties of the polytope are read directly from

the list [equation (11)] where the vertices are given in the

!-basis.

Each entry in equation (11) carries both signs, i.e. stands for

two diametral points. It is practical to start the sequence of

reflections, generating the vertices of the polytope, from the

‘dominant’ point of the orbit. It is the unique point of the orbit

that has non-negative coordinates in the !-basis. The domi-

nant point of C60 is ð1; 1; 0Þ ¼ !1 þ !2. All 60 vertices of C60

are shown in equation (11). The points written in bold have

the second and the third coordinates with the same sign:

�ð1; 1; 0Þ �ð�2; 1; sÞ �ð�1;�1; 2�Þ
�ð2;�1; �Þ �ð1;�2; 2�Þ

�ð�1; 2; 0Þ �ð1þ 2s; 0;�2Þ �ð2þ �;��; 1Þ

�ð1; 2�;�2�Þ �ð�1; 1þ 2�;�2�Þ

�ð�2� s; 2; 1Þ �ð�;�2� �; 1þ 2�Þ �ð��;�2; 1þ 2�Þ
�ð1þ 2�;�2�; 2Þ �ð2�;�1� 2�; 2þ �Þ

�ð2þ s; 0;�1Þ �ð�; 2�;�1� 2�Þ �ð�2� �; 2þ �;�1Þ

�ð�2; 2þ �;��Þ �ð�2�;�1; 2þ �Þ

�ð�1� 2s; 1; 2Þ �ð2�; �;�2� �Þ �ð��; 3�;�1� 2�Þ
�ð3�;�2�; 1Þ �ð0;�2� �; 3�Þ

�ð3s;�s;�1Þ �ð�1� 2�; 1þ 2�;�2Þ �ð�2�; 3�;�2� �Þ
�ð0; 1þ 2�;�3�Þ �ð2; �;��Þ:

ð11Þ

There are pairs of opposite points that are given in bold. Such

points are selected because their second and third coordinates

have the same sign. One of the two points with non-negative

coordinates is the dominant point of an H2 orbit. Every H2

orbit contains precisely one dominant point. If both coordi-

nates are strictly positive, the orbit is a decagon. If one of them

is zero, the orbit is a pentagon. The point with both the second

and third coordinates zero would be on the �1 axis, i.e. the H2

orbit of one point.

4. The H2 structure of C60

Let us underline that one needs to distinguish pentagons that

are the faces of C60 and the H2 pentagons in planes orthogonal

to the �1 axis (Fig. 3).

In Fig. 3 one views the H2 structure of the C60 polytopes as a

‘stack of pancakes’, i.e. from the direction parallel to the plane

spanned by !2 and !3. That makes the H2 orbits appear as

one-dimensional segments, the ‘pancakes’ viewed from the

side. Only the top and bottom pentagons of the stack are

among the 12 pentagons that belong to the surface of C60.

Reduction of the H3 symmetry of C60 to that of H2

decomposes the 60 vertices into the union of eight orbits of H2,

specified by the bold points in the list [equation (11)] of

vertices of C60. Out of the eight orbits, four are pentagons and

four are decagons,

C60: 5þ 5þ 10þ 10þ 10þ 10þ 5þ 5; ð12Þ

where 5 and 10 stand for a pentagon and decagon, respec-

tively. The decomposition is illustrated in Fig. 3.

The crucial observation one easily makes looking at Fig. 4 is

that there are no pentagonal faces attached simultaneously to

the upper and lower halves of C60. Therefore the contact

between the two halves is made by faces that are hexagons.

The four H2 pentagons in the basis f!1; !2; !3g as they

appear in Fig. 3 are

ð1; 1; 0Þ; ð2;�1; �Þ; ð2; �;��Þ;
ð2þ �;��; 1Þ; ð2þ �; 0;�1Þ;

ð�1; 2; 0Þ; ð1;�2; 2�Þ; ð1; 2�;�2�Þ;
ð1þ 2�;�2�; 2Þ; ð1þ 2�; 0;�2Þ;

ð�1� 2�; 0; 2Þ; ð�1� 2�; 2�;�2Þ; ð�1;�2�; 2�Þ;
ð�1; 2;�2�Þ; ð1;�2; 0Þ;

ð�2� �; 0; 1Þ; ð�2� �; �;�1Þ; ð�2;��; �Þ;
ð�2; 1;��Þ; ð�1;�1; 0Þ

ð13Þ

and the same pentagons in the basis f�1; !2; !3g,
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Figure 3
The C60 polytope viewed in the direction parallel to the H2 plane spanned
by !2 and !3. Horizontal segments are projections of the H2 orbits.
Individual vertices and edges of C60 are not shown. The first number in a
row is the �1 coordinate that distinguishes the H2 orbit inside the H3 orbit
of C60. The second number shows the radius of the circles containing
pentagons and decagons. The vertical direction is that of �1.

Figure 4
The C60 polytope oriented as in Fig. 2. The 12 pentagons of the surface of
C60 are shown without the hexagons. The 60 dots are the vertices of C60.



ð2þ 3�
2 ; 1; 0Þ ð2þ 3�

2 ;�1; �Þ; ð2þ 3�
2 ; �;��Þ;

ð2þ 3�
2 ;��; 1Þ; ð2þ 3�

2 ; 0;�1Þ;

ð1þ 3�
2 ; 2; 0Þ; ð1þ 3�

2 ;�2; 2�Þ; ð1þ 3�
2 ; 2�;�2�Þ;

ð1þ 3�
2 ;�2�; 2Þ; ð1þ 3�

2 ; 0;�2Þ;

ð�1� 3�
2 ; 0; 2Þ; ð�1� 3�

2 ; 2�;�2Þ; ð�1� 3�
2 ;�2�; 2�Þ;

ð�1� 3�
2 ; 2;�2�Þ; ð�1� 3�

2 ;�2; 0Þ;

ð�2� 3�
2 ; 0; 1Þ; ð�2� 3�

2 ; �;�1Þ; ð�2� 3�
2 ;��; �Þ;

ð�2� 3�
2 ; 1;��Þ; ð�2� 3�

2 ;�1; 0Þ:

ð14Þ

The four pentagons of equation (13) and of equation (14) split

into two pairs. Within each pair the pentagons differ by

permutation of the second and third coordinates, i.e. they have

opposite orientations in the plane spanned by !2 and !3, and

in equation (14) the �1 coordinates have opposite signs within

each pair.

Between the top two pentagons (see Fig. 3) and bottom two

pentagons, there are four H2 decagons. On the surface of C60

there is a ring of hexagons that connects the upper and lower

parts of the polytope. Unwrapping that ring into a plane, one

gets the ten hexagons of Fig. 5. Horizontal lines in Fig. 5

indicate the position of the four H2 decagons. The dominant

weights at each line specify particular decagons shown also in

Fig. 3.

The ten points that are at the intersection of each line with

the hexagons are the vertices of the corresponding H2

decagon. The correspondence is established by the dominant

weights shown in Fig. 5. The vertices are given relative to the

basis f�1; !2; !3g. In particular, the first coordinate shows the

position of the decagon on the �1 axis. One may also notice

that the vertices of the H2 decagons on the four horizontal

lines of Fig. 5 occur in pairs and that the pairs are shifted

horizontally relative to each other.

Looking along the �1 axis, at the four decagons of Fig. 5,

when they form the ring in C60, we have the ten vertices of

each of the four decagons,

�ð3�2 ; 1; �Þ; �ð3�2 ;�1; 2�Þ; �ð3�2 ; 2þ �;��Þ;
�ð3�2 ; 1þ 2�;�2�Þ; �ð3�2 ;�2� �; 1þ 2�Þ;

�ð� 3�
2 ; �; 1Þ; �ð� 3�

2 ; 2�;�1Þ; �ð� 3�
2 ;��; 2þ �Þ;

�ð� 3�
2 ;�2�; 1þ 2�Þ; �ð� 3�

2 ; 1þ 2�;�2� �Þ

�ð3�2 ; 2; 1Þ; �ð3�2 ;�2; 1þ 2�Þ; �ð3�2 ; 2þ �;�1Þ;
�ð3�2 ; 3�;�1� 2�Þ; �ð3�2 ;�2� �; 3�Þ;

�ð� 3�
2 ; 1; 2Þ; �ð� 3�

2 ; 1þ 2�;�2Þ; �ð� 3�
2 ;�1; 2þ �Þ;

�ð� 3�
2 ;�1� 2�; 3�Þ; �ð� 3�

2 ; 3�;�2� �Þ:

ð15Þ

There are two pairs of the decagons which differ by permu-

tation of the second and third coordinates indicating that they

are rotated by �
10 degrees relative to each other.

At this stage the icosahedral symmetry is still preserved.

The polytope is expressed either as one orbit of H3 or as a

union of eight orbits of H2 that are centred at the �1 axis and

are in a plane orthogonal to it. Their position in C60 is given by

the �1 coordinate (see Fig. 3).

5. C70

We next proceed to construct C70 starting from C60. Inserting

an additional decagon into the middle of the decomposition

[equation (12)] breaks the H3 symmetry.

5.1. Symmetry breaking

The H3 symmetry gets broken when an additional decagon

is inserted into the middle of the decomposition [equation

(12)]. The enlarged structure of C70 loses its spherical

symmetry, has 70 vertices/carbon molecules, and in the middle

of it there are five consecutive parallel decagons centred at the

�1 axis (see Fig. 6)

C70 : 5þ 5þ 10þ 10þ 10þ 10þ 10þ 5þ 5: ð16Þ

Insertion of one or several H2 decagons into the middle of the

H2 slicing as shown in Fig. 3 needs to be accompanied by two

additional adjustments in order to accomplish the transfor-

mation from C60 to higher fullerenes.

First the distances between the decagonal orbits in the

middle of the fullerene have to be the same. For that the upper

and lower halves of C60 have to be displaced further apart.

Comparing Figs. 3 and 7, the displacement is shown as the

change in the �1 coordinates of the H2 orbits. Indeed, �1

coordinates are increased and decreased by 0:5�, respectively.
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Figure 6
The polytope C70 has 105 edges and 12 pentagonal and 25 hexagonal
faces.

Figure 5
A ring of hexagons from the middle of the surface of C60 unwrapped into
a plane. The dominant points identify the H2 decagons relative to the
basis f�1; !2; !3g. Horizontal lines indicate the H2 decagons in the middle
of C60 shown also in Fig. 3.



The second adjustment refers to relative orientations of the

displaced halves of C60. If the number of inserted decagons is

odd, like in the C70 case, the two halves must be mirror images

of each other in order to match the surface hexagons in

between them. Indeed, the top and bottom rings of hexagons

in Fig. 8 are identically oriented. However, if an even number

of H2 orbits is inserted into the middle of C60, the orientation

of the displaced upper and lower halves of the fullerene

remains the same as in C60 (when zero orbits are inserted).

More precisely they are rotated relative to each other by �
10.

Finally we list the coordinates of the 70 vertices of C70 in the

basis f�1; !2; !3g:

ð�ð2þ 2sÞ; 1; 0Þ ð�ð2þ 2�Þ;�1; �Þ ð�ð2þ 2�Þ; �;��Þ
ð�ð2þ 2�Þ;��; 1�Þ ð�ð2þ 2�Þ; 0;�1Þ

ð�ð1þ 2sÞ; 2; 0Þ ð�ð1þ 2�Þ;�2; 2�Þ ð�ð1þ 2�Þ; 2�;�2�Þ
ð�ð1þ 2�Þ;�2�; 2Þ ð�ð1þ 2�Þ; 0;�2Þ

ð�2s; 1; sÞ ð�2�;�1; 2�Þ ð�2�; 2þ �;��Þ
ð�2�; 1þ 2�;�2�Þ ð�2�;�2� �; 1þ 2�Þ

ð�s; 2; 1Þ ð��;�2; 1þ 2�Þ ð��; 2þ �;�1Þ

ð��; 3�;�1� 2�Þ ð��;�2� �; 3�Þ

ð�2�;��;�1Þ ð�2�;�2�; 1Þ ð�2�; �;�2� �Þ
ð�2�; 2�;�1� 2�Þ ð�2�;�1� 2�; 2þ �Þ

ð��;�1;�2Þ ð��;�1� 2�; 2Þ ð��; 1;�2� �Þ
ð��; 1þ 2�;�3�Þ ð��;�3�; 2þ �Þ

ð0; 1; 2Þ ð0; 1þ 2�;�2Þ ð0;�1; 2þ �Þ
ð0;�1� 2�; 3�Þ ð0; 3�;�2� �Þ

ð0;�2;�1Þ ð0; 2;�1� 2�Þ ð0;�2� �; 1Þ

ð0;�3�; 1þ 2�Þ ð0; 2þ �;�3�Þ:

ð17Þ

Dominant points of the H2 orbits are given in bold. In all cases

but one, they come in pairs; only the orbit with its �1 coor-

dinate equal to 0 is unique. Altogether there are nine orbits of

H2 in C70, four pentagons and five decagons.

6. C80, C90 and related nanotubes

In the same way we have inserted into the middle of C60 one

ring of five hexagons (Fig. 8), thus forming C70, one can insert

two, three or more such rings, creating C80, C90 (Fig. 9), or

nanotubes of arbitrary length.

There is a fine distinction when creating such nanotubes,

according to whether an even or odd number of 5-hexagon

rings is inserted into C60. Inserting an even number of

5-hexagon rings leaves the upper and lower halves of C60

intact, except for displacement along the �1 axis to the

distance required by the length of the nanotube. Inserting an

odd number of 5-hexagon rings requires that the lower half of

C60 is rotated by �
10 relative to its upper half, i.e. it becomes

symmetrical with respect to the reflection r1.

7. Twisted fullerenes

Exact icosahedral symmetry of C60, which was the departure

point in this paper, admits a generalization without breaking

the symmetry. Among the continuum of its variants, we choose

in this section just two for detailed consideration to illustrate

the possibilities.
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Figure 7
The H2 orbits of C70 are viewed from the direction parallel to the plane of
!2 and !3. The inserted decagon projects into the line in the middle.

Figure 9
The polytopes (a) C80 and (b) C90.

Figure 8
A ring of hexagons from the middle of the surface of C70 unwrapped into
a plane. The horizontal lines indicate positions of the five H2 decagons.
The dominant points identify the H2 decagons here and in Fig. 3 relative
to the basis f�1; !2; !3g. Dashed lines are the boundaries of the ring of
five inserted hexagons.



The dominant point !1 þ !2, which served as the seed point

in previous sections, is replaced by

a!1 þ b!2; a; b 2 R; a; b> 0: ð18Þ

The icosahedral reflections generate from the seed point

the vertices of a ‘twisted’ C60. Its 60 vertices are on a sphere

of radius equal to the length of the seed point a!1 þ b!2.

It will have the same number of edges and 2-faces as counted

in x2.6. When a 6¼ b the hexagons cease to be regular

however; three of the sides become elongated while the

others are shortened. The long and short sides alternate as

shown in Fig. 10. The pentagons in contrast remain regular.

When either a or b vanishes the icosidodecahedron reduces to

a pentagonal dodecahedron or an icosahedron, respectively.

These limiting cases are well known and are of independent

interest.

The two cases we consider in this section have the seed

points !1 þ �!2 and �!1 þ !2. Icosahedral reflections r1, r2

and r3 act as before, according to equation (9). One calculates

the 60 vertices in the !-basis and only then converts the results

into the f�1; !2; !3g-basis. All 60 vertices are shown in equa-

tions (19) and (20). Bold entries with the second and third

coordinates non-negative are the dominant points of the H2

orbits. The H2 orbits form four decagons and four pentagons

in each case.

Starting from the seed point !1 þ �!2, the reflections

generate the following 60 points in the f�1; !2; !3g-basis:

�ð2þ 5s
2 ; s; 0Þ �ðs2 ; 1þs; sÞ �ð2þ 5�

2 ;��; 1þ�Þ
�ð1þ 5�

2 ;�1��; 1þ2�Þ �ð1þ 3�
2 ; 1þ3�;�1�2�Þ

�ð1þ 5s
2 ; 1þs; 0Þ �ð2þ 5s

2 ; 0;�sÞ �ð1þ 5�
2 ; 1þ2�;�1�2�Þ

�ð1þ 3�
2 ; 2þ2�;�1��Þ �ð2þ 5�

2 ; 1þ�;�1��Þ

�ð1þ 3s
2 ; 1; 1þsÞ �ð2þ 5�

2 ;�1��; �Þ �ð1þ 5�
2 ;�1�2�; 1þ�Þ

�ð1þ 3�
2 ;�2�2�; 1þ3�Þ �ð1þ 3�

2 ;�1; 1þ2�Þ

�ðs2 ;�s;�1�sÞ �ð�2 ; 2þ2�;��Þ �ð1þ 3�
2 ;�1�3�; 2þ2�Þ

�ð�2 ;�1��; 1þ3�Þ �ð1þ 3�
2 ; 1þ2�;�1�3�Þ

�ð1þ 5s
2 ; 0;�1�sÞ �ð�2 ; �;�2�2�Þ �ð1þ 3�

2 ; 1þ�;�2�2�Þ
�ð�2 ;�1�3�; 1þ�Þ �ð�2 ; 2þ3�;�1�3�Þ

�ð1þ 3s
2 ;�1�s;�1Þ �ð1þ 3�

2 ;�1�2�; 1Þ �ð�2 ;�2�2�; 2þ3�Þ
�ð�2 ;�2�3�; 2þ2�Þ �ð�2 ; 1þ3�;�2�3�Þ:

ð19Þ

Starting from the seed point �!1 þ !2, the reflections generate

the following 60 points in the f�1; !2; !3g-basis:

�ð3þ5s
2 ; 1; 0Þ �ð3þ3s

2 ; 1þs; 0Þ �ð3þ5�
2 ;�1; �Þ

�ð3þ3�
2 ;�1��; 1þ2�Þ �ð3þ5�

2 ; 1þ�;��Þ

�ð1þ3s
2 ; s; sÞ �ð3þ3s

2 ; 0;�1�sÞ �ð3þ3�
2 ; 1þ2�;�1�2�Þ

�ð1þ3�
2 ;�2�2�; 1þ2�Þ �ð1þ3�

2 ; 2þ2�;�1�2�Þ

�ð1þs
2 ; 1þs; sÞ �ð3þ5�

2 ;��; 1Þ �ð3þ3�
2 ;�1�2�; 1þ�Þ

�ð1þ3�
2 ;�1�2�; 2þ2�Þ �ð1þ�2 ; 1þ2�;�1Þ

�ð1þs
2 ;�1;�1�sÞ �ð1þ3�

2 ; 1þ2�;��Þ �ð1þ3�
2 ;��; 1þ2�Þ

�ð1þ�2 ;�1��; 2þ2�Þ �ð1þ3�
2 ; 1þ2�;�2�2�Þ

�ð3þ5s
2 ; 0;�1Þ �ð1þ�2 ; 1;�1�2�Þ �ð1þ3�

2 ; �;�1�2�Þ
�ð1þ�2 ;�2�2�; 1þ�Þ �ð1þ�2 ; 1þ3�;�2�2�Þ

�ð1þ3s
2 ;�s;�sÞ �ð1þ3�

2 ;�1�2�; �Þ �ð1þ�2 ;�1�2�; 1þ3�Þ
�ð1þ�2 ;�1�3�; 1þ2�Þ �ð1þ�2 ; 2þ2�;�1�3�Þ:

ð20Þ

The two cases are easily distinguished. Indeed, the case

generated from the seed point !1 þ �!2 dictates the penta-

gons to be larger than for the case generated from the seed

point �!1 þ !2. In addition, the edges separating two hexa-

gons are of different length than the edges between a hexagon

and pentagon.

Let us calculate the lengths of the short and long edges in

both cases in Fig. 10. In order to simplify the expressions, we

leave out the angle brackets of the scalar products. The value

of a scalar product of two !’s is read as before from equation

(3).

The length of the pentagon–hexagon edges in Fig. 10a:

f½!1 þ �!2 � r2ð!1 þ �!2Þ�
2
g

1=2
¼ �21=2:

The length of the hexagon–hexagon edges in Fig. 10a:

f½!1 þ �!2 � r1ð!1 þ �!2Þ�
2
g

1=2
¼ ½ð2!1 � !2Þ

2
�
1=2
¼ 21=2:

The length of the pentagon–hexagon edges in Fig. 10b:

f½�!1 þ !2 � r2ð�!1 þ !2Þ�
2
g

1=2
¼ ½ð�!1 þ 2!2 � �!3Þ

2
�
1=2

¼ 21=2:

The length of the hexagon–hexagon edges in Fig. 10b:

f½�!1 þ !2 � r1ð�!1 þ !2Þ�
2
g

1=2
¼ �21=2:

8. Fullerene special functions

Using any fullerene with known coordinates � of its vertices,

one defines fullerene functions of three real variables by

placing into each vertex � the exponential functions

expð2�ih�; xiÞ, wherein the scalar product � is multiplied with

x 2 R3. Such a function is defined by the exact coordinates of
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Figure 10
The two cases of C60 which have the seed points (a) !1 þ �!2 and (b)
�!1 þ !2.



the vertices of the particular fullerene, but it is present in the

entire 3-space through its three coordinates of x.

In the special case of C60, or more generally when the

function is defined by a single orbit of the vertices of an H3

polytope, the fullerene functions have many attractive prop-

erties. Most notably their products decompose into a sum of

fullerene functions. However, when one is multiplying two

fullerene functions where at least one has a broken H3

symmetry, one enters a territory unexplored in the literature.

As long as the H3 symmetry is broken to one subgroup, say H2,

similar decomposition into a sum of fullerenes has to take

place. No cases of such decomposition are found in the

literature. At the origin of R3, where x is a zero vector, a

fullerene function has a large maximum.

9. Concluding remarks

Precise geometric description of some of the best known

fullerenes in this paper is not intended as the final word about

any of them, but it can be taken as a possible departure in

describing the physical properties of fullerenes. Moreover,

breaking the H3 symmetry to H2 is just one of the avenues for

icosahedral symmetry breaking that leads to fullerenes that

are well known to exist in nature. There are at least two other

subgroups of H3 which could play a similar role. One is

generated by the reflections r1 and r2, and the other is

generated by r1 and by r3 [see equation (9)]. Such a symmetry

breaking would lead to other fullerenes in an analogous way

as the subgroup H2 does here.

Exploitation of the dual ‘icosahedral bases’, �- and !-bases

of xx2.3 and 2.2, drastically simplifies the description of faces

of C60 and any other polytope with H3 symmetry, and more

generally, of any polytope generated as one orbit of any finite

reflection group (Champagne et al., 1995) in the real Euclidean

space.

The simple roots of H3 can be partially defined as follows:

The straight line containing ��1 passes through the centres

of two opposite pentagons of the shell C60.

The straight line containing ��2 passes through the centres

of two opposite edges of C60 that separate two hexagons.

The straight line containing ��3 passes through the centres

of two opposite hexagons of the shell C60.

To complete the definition of the �-basis, one has to specify

relative angles between the three roots �. Correct angles are

crucial in defining the !-basis that is dual to the �-basis

[equation (4)]. Only in the !-basis is the computation of the

faces of dimension 0 (vertices), 1 (edges) and 2 relatively easy.

The icosahedral group H3 underlies both the fullerenes and

the aperiodic three-dimensional crystals (‘quasicrystals’)

(Moody et al., 2008; Moody & Patera, 1993). It is undoubtedly

possible to link the fullerenes and nanotubes with suitably set

up infinite quasicrystals. In our opinion a systematic investi-

gation of such possibilities would be of interest.
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